

... for a brighter future









A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC



## **Argonne Leadership Computing Facility**

**Overview** 

Ray Bair, Director Argonne National Laboratory and University of Chicago

June 20, 2007

## Over 20 years of Advanced Systems for DOE and Others

### ACRF period [1983-1992]

- DOE's founding ACRF
- Explored many parallel architectures, developed programming models and tools, trained >1000 people



- Production-oriented parallel computing for Grand Challenges in addition to Computer Science.
- Fielded 1st IBM SP in DOE







### TeraGrid [2001-present]

- Overall Project Lead
- Defining, deploying and operating the integrated national cyberinfrastructure for NSF
- 9 sites, 22 systems, 200TF

### LCRC [2003-present]

- Lab-wide production supercomputer service
- All research divisions, 56 projects, 380 users

### ■ BlueGene Evaluation [2005-present]

- Founded BlueGene Consortium with IBM
  - 67 institutions, >260 members
  - Applications Workshop Series
  - Systems Software Collaborations

## DOE Leadership Computing Facility (LCF) Strategy

- DOE SC selected the ORNL, ANL and PNNL teams (May 12, 2004) based on a competitive peer review
  - ORNL will deploy a series of systems based on Cray's XT3/4 architectures
    250TF/s in FY07 and 1000TF/s in FY08/09
  - ANL will develop a series of systems based on IBM's BlueGene @ 100TF/s in FY07 and 250-500TF/s in FY08/FY09 with IBM's Next Generation Blue Gene
  - PNNL will contribute software technology
- DOE SC will make these systems available as capability platforms to the broad national community via competitive awards (e.g. INCITE Allocations)
  - Each facility will target ~20 large-scale production applications teams
  - Each facility will also support development users
- DOE's LCFs complement existing and planned production resources at NERSC
  - Capability runs will be migrated to the LCFs, improving NERSC throughput
  - NERSC will play an important role in training and new user identification

## Mission and Vision for the ALCF

### **Our Mission**

Provide the computational science community with a world leading computing capability dedicated to breakthrough science and engineering.

### **Our Vision**

A world class center for computation driven scientific discovery that has:

- outstandingly talented people,
- the best collaborations with computer science and applied mathematics,
- the most capable and interesting computers and,
- a true spirit of adventure.

See http://www.alcf.anl.gov/ for additional information

## Decision to choose Blue Gene is Supported by

- Blue Gene has been fielded within a factor of 3 of PF goal
  - No other system is close to this scale (lower risk to scale to PF)
- Applications community has reacted positively, though the set of codes is still limited, but is larger than expected, and some applications are doing extremely well
  - For those applications that can make the transition, the BG platform provides outstanding scientific opportunity - many can, some can't
- Blue Gene has been remarkably reliable at scale
  - The overall reliability/TF appears to be at least an order of magnitude better than other platforms for which we have data
- Power consumption is 2x better than other platforms
  - Lower cost of ownership and window to the future of lower power
- System Cost
  - The cost of deploying a balanced system is lower than other platforms

## Example Blue Gene Science Applications

- **Qbox** FPMD solving Kohn-Sham equations, strong scaling on problem of 1000 molybdenum atoms with 12,000 electrons (86% parallel efficiency on 32K cpus @ SC05), achieved 207 TFs recently on BG/L
- **ddcMD** many-body quantum interaction potentials (MGPT), 1/2 billion atom simulation, 128K cpus, achieved > 107 TFs on BG/L via fused dgemm and ddot
- **BlueMatter** scalable biomolecular MD with Lennard-Jones 12-6, P3ME and Ewald, replica-exchange 256 replicas on 8K cpus, strong scaling to 8 atoms/node
- GAMESS ab initio electronic structure code, wide range of methods, used for energetics, spectra, reaction paths and some dynamics, scales O(N<sup>5</sup>-N<sup>7</sup>) in number of electrons, uses DDI for communication and pseudo-shared memory, runs to 32,000 cpus
- **FLASH3** produced largest weakly- compressible, homogeneous isotropic turbulence simulation to date on BG/L, excellent weak scaling, 72 million files 156 TB of data

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

QuickTime™ and a TIFF (LZW) decompressor

F (LZW) decompressor

## DOE / IBM Partnership for Petascale Architectures

DOE NNSA/LLNL, DOE SC/ANL and IBM/Rochester/Watson



## Argonne Leadership Computing Facility

Established 2006. Dedicated to breakthrough science and engineering.

- Current Blue Gene/L Capabilities
  - BGL: 1024 nodes, 2048 cores, 5.7 TF, 512GB
  - Supports development + INCITE
- Additional 2007 INCITE time at IBM T.J. Watson Research
  - BGW: 20,480 nodes, 40,960 cores, 114 TF, 10 TB
- Coming for early 2008 production
  - 100+ TF next gen. system
  - Fast PB file system
  - Many PB tape archive
- Then for early 2009 production
  - Major Blue Gene upgrade
  - Next gen. file system



**BGL** 





Next Generation Blue Gene

## ALCF Q3 FY2008 At start of INCITE Production



## **ALCF Service Offerings**



## Catalyst Program

### What is it?

ALCF Program to establish strategic collaborations with our leading project partners to maximize benefits from the use of various ALCF resources

# What are the program features?

- Full project lifecycle approach to collaboration with our project partners
- Provide value-added services and support in conjunction with ALCF HW and SW resources
- Tailor services-delivery program for the unique requirements of each research initiative
- Maintain close contact with research teams through ongoing interactions with assigned ALCF Project Coordinator

# What are the key objectives?

- 'Jump-start' the use of ALCF resources for major ALCF projects
- Align availability of ALCF services and compute resources with the needs of researchers through joint project planning based on research goals and timing objectives
- Establish a spirit of collaboration to maximize the value that ALCF can bring to our project partners

## **ALCF Organization**



## **ALCF** Timeline

### 2004

- Formed of the Blue Gene Consortium with IBM
- DOE-SC selected the ORNL, ANL and PNNL teams for Leadership Computing Facility award

### 2005

Installed 5 teraflops Blue Gene/L for evaluation

### 2006

- Began production support of 6 INCITE projects, with BGW
- Joined IBM and LLNL to design and develop next Blue Genes
- "Lehman" Peer Review of ALCF campaign plans

### 2007

- Increased to 9 INCITE projects; continued development projects
- Install 100 teraflops next gen Blue Gene system (late 2007)

### 2008

- Begin support of INCITE projects on next gen Blue Gene
- Add 250-500T teraflops Blue Gene system